Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays.

نویسندگان

  • Jie Hu
  • Lin Wang
  • Fei Li
  • Yu Long Han
  • Min Lin
  • Tian Jian Lu
  • Feng Xu
چکیده

Lateral flow assays (LFAs) as rapid analytical techniques promise to be widely used in point-of-care (POC) diagnostics because of their affordability and simplicity. However, LFAs still suffer from low sensitivity in detection of various biomarkers, e.g., nucleic acids. In this study, we developed a simple and general one-step signal amplification strategy, which employed oligonucleotide-linked gold nanoparticle (AuNP) aggregates to enhance the sensitivity in nucleic acid lateral flow (NALF) assays. Using a nucleic acid sequence of human immunodeficiency virus type 1 (HIV-1) as a model analyte, we observed that the detection limit of the developed NALF assay was 0.1 nM, which was improved by 2.5-fold compared with that of a non-signal amplification approach. The methodology described here could be used to detect a broad range of nucleic acids, and the general signal amplification approach could be potentially adopted in other types of LFAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lateral flow immunoassay with the signal enhanced by gold nanoparticle aggregates based on polyamidoamine dendrimer.

In order to amplify the signal in a gold nanoparticle-based lateral flow immunoassay, a simple and sensitive method utilizing gold nanoparticle aggregates as a colored reagent formed with a polyamidoamine dendrimer was developed. The results were compared with that achieved by employing the individual nanoparticles used in the conventional lateral flow immunoassay. Under the optimized experimen...

متن کامل

Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics.

Although lateral flow assays (LFAs) are currently being used in some point-of-care applications (POC), they cannot still be extended to a broader range of analytes for which higher sensitivities and lower detection limits are required. To overcome such drawbacks, we propose here a simple and facile alternative based on the use of delay hydrophobic barriers fabricated by wax printing so as to im...

متن کامل

DNA detection on lateral flow test strips: enhanced signal sensitivity using LNA-conjugated gold nanoparticles.

A lateral flow test strip assay, enabling sensitive detection of DNA specific to the foodborne pathogen E. coli O157:H7, is described. The use of LNA-conjugated gold nanoparticle probes, along with signal amplification protocols, results in minimum detectable concentrations of ~0.4 nM.

متن کامل

A Comparison of 2-part and 3-part Nanoparticle-Based Sensor

There has long been a drive to produce sensors with ever-increasing sensitivity and selectivity, while also achieving robustness and ease of use. Nanoparticle-based sensing approaches have generated a great deal of attention and excitement, because they possess such qualities. For these assays to function properly, it requires the integration of molecular recognition motifs and materials with o...

متن کامل

An Ultrasensitive Gold Nanoparticle-based Lateral Flow Test for the Detection of Active Botulinum Neurotoxin Type A

Botulism is a severe and potentially lethal paralytic disease caused by several botulinum neurotoxin-producing Clostridia spp. In China, the majority of the cases caused by botulism were from less-developed rural areas. Here, we designed specific substrate peptides and reconfigured gold nanoparticle-based lateral flow test strip (LFTS) to develop an endopeptidase-based lateral flow assay for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Lab on a chip

دوره 13 22  شماره 

صفحات  -

تاریخ انتشار 2013